Ensemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Authors
Abstract:
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effective features, using an extended wrapper method, ensemble classification is performed. The extended feature selection approach includes a prior feature filtering and a wrapper approach using C4.5 decision tree. Ensemble classification, using cost sensitive decision trees is performed in a decision forest framework. A locally gathered fraud detection dataset is used to estimate the proposed method. The proposed method is assessed using accuracy, recall, and F-measure as evaluation metrics and compared with basic classification algorithms including ID3, J48, Naïve Bayes, Bayesian Network and NB tree. Experiments show that considering the F-measure as evaluation metric, the proposed approach yields 1.8 to 2.4 percent performance improvement compared to other classifiers.
similar resources
Feature engineering strategies for credit card fraud detection
Every year billions of Euros are lost worldwide due to credit card fraud. Thus, forcing financial institutions to continuously improve their fraud detection systems. In recent years, several studies have proposed the use of machine learning and data mining techniques to address this problem. However, most studies used some sort of misclassification measure to evaluate the different solutions, a...
full textCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
full textGenetic algorithms for credit card fraud detection
Due to the rise and rapid growth of E-Commerce, use of credit cards for online purchases has dramatically increased and it caused an explosion in the credit card fraud. Fraud is one of the major ethical issues in the credit card industry. As credit card becomes the most popular mode of payment for both online as well as regular purchase, cases of fraud associated with it are also rising. In rea...
full textCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
full textImproving Credit Card Fraud Detection using a Meta-Classification Strategy
One of the issues facing credit card fraud detection systems is that a significant percentage of transactions labeled as fraudulent are in fact legitimate. These "false alarms" delay the detection of fraudulent transactions and can cause unnecessary concerns for customers. In this study, over 1 million unique credit card transactions from 11 months of data from a large Canadian bank w...
full textFuzzy Darwinian Detection of Credit Card Fraud
Credit evaluation is one of the most important and difficult tasks for credit card companies, mortgage companies, banks and other financial institutes. Incorrect credit judgement causes huge financial losses. This work describes the use of an evolutionary-fuzzy system capable of classifying suspicious and non-suspicious credit card transactions. The paper starts with the details of the system u...
full textMy Resources
Journal title
volume 5 issue 2
pages 235- 243
publication date 2017-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023